Taq polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism Thermus aquaticus, from which it was originally isolated by master's student Alice Chien et al. in 1976. Its name is often abbreviated to Taq or Taq pol. It is frequently used in the polymerase chain reaction (PCR), a method for greatly amplifying the quantity of short segments of DNA.
T. aquaticus is a bacterium that lives in hot springs and hydrothermal vents, and Taq polymerase was identified as an enzyme able to withstand the protein-denaturing conditions (high temperature) required during PCR. Therefore, it replaced the DNA polymerase from Escherichia coli originally used in PCR.
One of Taq's drawbacks is its lack of 3' to 5' exonuclease proofreading activity resulting in relatively low replication fidelity. Originally its error rate was measured at about 1 in 9,000 nucleotides. Some thermostable DNA polymerases have been isolated from other thermophilic bacteria and archaea, such as Pfu DNA polymerase, possessing a proofreading activity, and are being used instead of (or in combination with) Taq for high-fidelity amplification. Fidelity can vary widely between Taqs, which has profound effects in downstream sequencing applications.
Taq makes DNA products that have A (adenine) overhangs at their 3' ends. This may be useful in TA cloning, whereby a cloning vector (such as a plasmid) that has a T (thymine) 3' overhang is used, which complements with the A overhang of the PCR product, thus enabling DNA ligase of the PCR product into the plasmid vector.
However, after each round of replication the mixture needs to be heated above 90 °C to denature the newly formed DNA, allowing the strands to separate and act as templates in the next round of amplification. This heating step also inactivates the DNA polymerase that was in use before the discovery of Taq polymerase, the Klenow fragment (sourced from E. coli). Taq polymerase is well-suited for this application because it is able to withstand the temperature of 95 °C which is required for DNA strand separation without denaturing.
Use of the thermostable Taq enables running the PCR at high temperature (~60 °C and above), which facilitates high specificity of the primers and reduces the production of nonspecific products, such as primer dimer. Also, use of a thermostable polymerase eliminates the need to add new enzyme to each round of thermocycling. A single closed tube in a relatively simple Thermal cycler can be used to carry out the entire process. Thus, the use of Taq polymerase was the key idea that made PCR applicable to a large variety of molecular biology problems concerning DNA analysis.
In December 1999, U.S. District Judge Vaughn Walker ruled that the 1990 patent involving Taq polymerase was issued, in part, on misleading information and false claims by scientists with Cetus Corporation. The ruling supported a challenge by Promega Corporation against Hoffman-La Roche, which purchased the Taq patents in 1991. Judge Walker cited previous discoveries by other laboratories, including the laboratory of John Trela at the University of Cincinnati department of biological sciences, as the basis for the ruling.
Unlike the same domain in E. coli, which would degrade primers and must be removed by digestion for PCR use,
Versions of the polymerase without the 5'-3' exonuclease domain has been produced, among which Klentaq or the Stoffel fragment are best known. The complete lack of exonuclease activity make these variants suitable for primers that exhibit secondary structure as well as for copying circular molecules. Other variations include using Klentaq with a high-fidelity polymerase, a Thermosequenase that recognizes substrates like T7 DNA polymerase does, mutants with higher tolerances to inhibitors, or "domain-tagged" versions that have an extra helix-hairpin-helix motif around the catalytic site to hold the DNA more tightly despite adverse conditions.
The reliance upon Taq polymerase as a catalyst for the PCR replication process has been highlighted during the COVID-19 Pandemic of 2020. Shortages of the necessary enzyme have impaired the ability of countries worldwide to produce test kits for the virus. Without Taq polymerase, the disease detection process is much slower and tedious.
Despite the advantages of using Taq polymerase in PCR disease detection, the enzyme is not without its shortcomings. Retroviral diseases (HIV, HTLV-1, and HTLV-II) often include mutations from guanine to adenine in their genome. Mutations such as these are what allow PCR tests to detect the diseases but Taq polymerase’s relatively low fidelity rate makes the same G-to-A mutation occur and possibly yield a false positive test result.
In PCR
Patent issues
Detailed history of Cetus Corporation and the commercial aspects of PCR. In 1989, Science Magazine named Taq polymerase its first "Molecule of the Year". Kary Mullis received the Nobel Prize in Chemistry in 1993, the only one awarded for research performed at a biotechnology company. By the early 1990s, the PCR technique with Taq polymerase was being used in many areas, including basic molecular biology research, Genetic testing, and forensics. It also began to find a pressing application in direct detection of the HIV in AIDS.
Domain structure
Exonuclease domain
Binding with DNA
Mutants
Significance in disease detection
See also
|
|